Consistent blood glucose regulation and tight control over your blood glucose levels are critical to being able to reverse and possibly cure your Type 2 diabetes.

And, despite what you may be reading on the Internet, you don't go from having high glucose readings to reversing your diabetes in 30 days! It's a structured and detailed process that takes a lot longer than 30 days. 

Most diabetes program fail to explain what is really meant by blood glucose regulation and control. Why? Because once you understand this, you'll have a better insight into which programs can actually help you.

Author's Perspective: In engineering, we already have an in-depth understanding of closed loop and feedback control systems. So, it was pretty easy for me to gain an in-depth understanding of our body's blood glucose regulation system.

Blood Glucose Regulation

The human body has several closed loop and feedback control systems that enable it to maintain homeostasis for various health-related elements, e.g. body temperature, blood pressure, blood glucose, blood pH. 

Homeostasis is the ability of the human body (or a cell) to maintain a constant internal environment of stability and balance in response to environmental changes. 

Because the internal and external environments of a cell are constantly changing, adjustments must be made continuously to stay at or near the set point (the normal level or range). Homeostasis can be thought of as a dynamic equilibrium rather than a constant, unchanging state.

The endocrine system plays an important role in homeostasis because it uses hormones to regulate the blood and the activity of body cells to stay within a tight range. The release of hormones into the blood is controlled by a stimulus.

The stimulus either causes an increase or a decrease in the amount of hormone secreted. Then, the response to a stimulus changes the internal conditions and may itself become a new stimulus. This self-adjusting mechanism is called feedback regulation.

The specific system we're talking about here is the Blood Glucose Regulation System. The hormones are insulin and glucagon. The stimulus is raised or lowered blood glucose.

Blood Glucose Regulation System

The primary goal of the body’s Blood Glucose Regulation System is to keep blood glucose in a tight range between 70 and 110 mg/dL (or 3.89 to 6.11 mmol/L).

As depicted in the following diagram, when blood glucose rises (for example, after eating) ‚ƒ„…†‚ƒ„…†[1, 2], the hormone insulin is secreted [3] from the beta cells of the pancreas, triggering muscle and fat cells [4] to absorb glucose from the bloodstream causing blood glucose to decrease [5].

When blood glucose falls [1, 2] (after heavy exercise or lack of food for extended periods), glucagon is secreted from the alpha cells of the pancreas [3], causing the liver to release stored glycogen as glucose into the bloodstream [4, 5], causing blood glucose to rise.

This is how blood glucose is managed normally in a non-diabetic's body.

Normal Blood Glucose Regulation

Note: The left side of the diagram shows what happens when blood glucose rises; and, the right side shows what happens when blood glucose falls. Each side works in concert to keep your blood glucose in a tight range of 70-110 mg/dl.

However, in a diabetic's body, when blood glucose rises, the muscle and fat cells are unable to absorb glucose from the bloodstream (because they are insulin-resistant). This causes blood glucose to continue to rise beyond the upper target level (this is called hyperglycemia).

As depicted in the following diagram, the Blood Glucose Regulation System isn't working as designed.

The high levels of glucose [1] trigger the pancreas to secrete more insulin [2, 3]. But, because of insulin resistance, here is no uptake of glucose into the cells [4]. As a result, glucose levels continue to rise [5].

To try to correct the high glucose problem, the pancreas continues excreting more and more insulin to try to "push" the excess glucose into the cells. If the problem is not corrected, this can lead to hyperinsulinemia.

And, if insulin resistance, hyperglycemia and hyperinsulinemia continue for an extended number of years, this can lead to Type 2 diabetes.

Abnormal Blood Glucose Regulation

Note 1: Refer to the Type 2 Diabetes and Pathophysiology web pages for more details about insulin resistance, hyperinsulinemia, cell inflammation, and Type 2 diabetes pathogenesis.

Note 2: To understand how blood glucose testing and diet are used to help regulate this system and reverse your diabetes, refer to the Blood Glucose Testing and Diabetes Diet web pages.


Google Ad





Google Ad

 Disclaimer: This site does not provide medical advice, diagnosis or treatment.

Copyright © 2018. Death to Diabetes, LLC. All rights reserved.